Moment matching approximation

Carl Edward Rasmussen

October 28th, 2016

Key concepts

- in practise, we can (more or less) only compute with Gaussians
- but the game outcomes are binary
- how can we approximate a binary variable with a Gaussian?
- key idea: moment matching approximates the effect of the binary variable

Approximating a step by a Gaussian?

Q: How do we approximate massy by a Gausisan? Does that ever make sense?

Moments of a truncated Gaussian density (1)

Consider the truncated Gaussian density function

$$
p(t)=\frac{1}{Z_{t}} \delta(y-\operatorname{sign}(t)) \mathcal{N}\left(t ; \mu, \sigma^{2}\right) \text { where } y \in\{-1,1\} \text { and } \delta(x)=1 \text { iff } x=0
$$

We want to approximate $p(t)$ by a Gaussian density function $q(t)$ with mean and variance equal to the first and second central moments of $p(t)$. We need:

- First moment: $\mathbb{E}[t]=\langle t\rangle_{p(t)}$
- Second central moment: $\mathbb{V}[t]=\left\langle\mathrm{t}^{2}\right\rangle_{\mathfrak{p}(\mathrm{t})}-\langle\mathrm{t}\rangle_{p(\mathrm{t})}^{2}$

Moments of a truncated Gaussian density (2)

We have seen that the normalisation constant is $Z_{t}=\Phi\left(\frac{y \mu}{\sigma}\right)$.
First moment. We take the derivative of Z_{t} wrt. μ :

$$
\begin{aligned}
\frac{\partial Z_{t}}{\partial \mu} & =\frac{\partial}{\partial \mu} \int_{0}^{+\infty} N\left(t ; y \mu, \sigma^{2}\right) d t=\int_{0}^{+\infty} \frac{\partial}{\partial \mu} N\left(t ; y \mu, \sigma^{2}\right) d t \\
& =\int_{0}^{+\infty} y \sigma^{-2}(t-y \mu) N\left(t ; y \mu, \sigma^{2}\right) d t=y Z_{t} \sigma^{-2} \int_{-\infty}^{+\infty}(t-y \mu) p(t) d t \\
& =y Z_{t} \sigma^{-2}\langle t-y \mu\rangle_{p(t)}=y Z_{t} \sigma^{-2}\langle t\rangle_{p(t)}-\mu Z_{t} \sigma^{-2}
\end{aligned}
$$

where $\langle t\rangle_{p(t)}$ is the expectation of t under $p(t)$. We can also write:

$$
\frac{\partial Z_{t}}{\partial \mu}=\frac{\partial}{\partial \mu} \Phi\left(\frac{y \mu}{\sigma}\right)=y \mathcal{N}\left(y \mu ; 0, \sigma^{2}\right)
$$

Combining both expressions for $\frac{\partial Z_{t}}{\partial \mu}$ we obtain

$$
\langle t\rangle_{p(t)}=y \mu+\sigma^{2} \frac{\mathcal{N}\left(y \mu ; 0, \sigma^{2}\right)}{\Phi\left(\frac{y \mu}{\sigma}\right)}=y \mu+\sigma \frac{\mathcal{N}\left(\frac{y \mu}{\sigma} ; 0,1\right)}{\Phi\left(\frac{y \mu}{\sigma}\right)}=y \mu+\sigma \Psi\left(\frac{y \mu}{\sigma}\right)
$$

where use $\mathcal{N}\left(y \mu ; 0, \sigma^{2}\right)=\sigma^{-1} \mathcal{N}\left(\frac{y \mu}{\sigma} ; 0,1\right)$ and define $\Psi(z)=\frac{N(z ; 0,1)}{\Phi(z)}$.

Moments of a truncated Gaussian density (3)

Second moment. We take the second derivative of Z_{t} wrt. μ :

$$
\begin{aligned}
\frac{\partial^{2} Z_{t}}{\partial \mu^{2}} & =\frac{\partial}{\partial \mu} \int_{0}^{+\infty} y \sigma^{-2}(t-y \mu) N\left(t ; y \mu, \sigma^{2}\right) \mathrm{dt} \\
& =\Phi\left(\frac{y \mu}{\sigma}\right)\left\langle-\sigma^{-2}+\sigma^{-4}(t-y \mu)^{2}\right\rangle_{p(t)}
\end{aligned}
$$

We can also write

$$
\frac{\partial^{2} Z_{t}}{\partial \mu^{2}}=\frac{\partial}{\partial \mu} y \mathcal{N}\left(y \mu ; 0, \sigma^{2}\right)=-\sigma^{-2} y \mu \mathcal{N}\left(y \mu ; 0, \sigma^{2}\right)
$$

Combining both we obtain

$$
\mathbb{V}[t]=\sigma^{2}\left(1-\Lambda\left(\frac{y \mu}{\sigma}\right)\right)
$$

where we define $\Lambda(z)=\Psi(z)(\Psi(z)+z)$.

